1,947 research outputs found

    Preliminary space mission design under uncertainty

    Get PDF
    This paper proposes a way to model uncertainties and to introduce them explicitly in the design process of a preliminary space mission. Traditionally, a system margin approach is used in order to take them into account. In this paper, Evidence Theory is proposed to crystallise the inherent uncertainties. The design process is then formulated as an Optimisation Under Uncertainties (OUU). Three techniques are proposed to solve the OUU problem: (a) an evolutionary multi-objective approach, (b) a step technique consisting of maximising the belief for different levels of performance, and (c) a clustering method that firstly identifes feasible regions. The three methods are applied to the BepiColombo mission and their effectiveness at solving the OUU problem are compared

    CRITICAL INFRASTRUCTURE PROTECTION WITHIN THE EUROPEAN UNION

    Get PDF
    The new dynamics and intensity of the risks and threats posed to societal functioning and citizens’ security have acquired new meanings. Consequently, an integrated approach to the concept of ”critical infrastructure” is necessary. The critical nature of some of the basic characteristics of the critical infrastructures has made them acquire new meanings within the national/transnational strategic planning. Moreover, the complexity and importance of critical infrastructure protection for social stability have generated the correlaton of the strategies developed by states and organizations

    Extension of the sun-synchronous Orbit

    Get PDF
    Through careful consideration of the orbit perturbation force due to the oblate nature of the primary body a secular variation of the ascending node angle of a near-polar orbit can be induced without expulsion of propellant. Resultantly, the orbit perturbations can be used to maintain the orbit plane in, for example, a near-perpendicular (or at any other angle) alignment to the Sun-line throughout the full year of the primary body; such orbits are normally termed Sun-synchronous orbits [1, 2]. Sun-synchronous orbits about the Earth are typically near-circular Low-Earth Orbits (LEOs), with an altitude of less than 1500 km. It is normal to design a LEO such that the orbit period is synchronised with the rotation of the Earth‟s surface over a given period, such that a repeating ground-track is established. A repeating ground-track, together with the near-constant illumination conditions of the ground-track when observed from a Sun-synchronous orbit, enables repeat observations of a target over an extended period under similar illumination conditions [1, 2]. For this reason, Sun-synchronous orbits are extensively used by Earth Observation (EO) platforms, including currently the Environmental Satellite (ENVISAT), the second European Remote Sensing satellite (ERS-2) and many more. By definition, a given Sun-synchronous orbit is a finite resource similar to a geostationary orbit. A typical characterising parameter of a Sun-synchronous orbit is the Mean Local Solar Time (MLST) at descending node, with a value of 1030 hours typical. Note that ERS-1 and ERS-2 used a MLST at descending node of 1030 hours ± 5 minutes, while ENVISAT uses a 1000 hours ± 5 minutes MLST at descending node [3]. Following selection of the MLST at descending node and for a given desired repeat ground-track, the orbit period and hence the semi-major axis are fixed, thereafter assuming a circular orbit is desired it is found that only a single orbit inclination will enable a Sun-synchronous orbit [2]. As such, only a few spacecraft can populate a given repeat ground-track Sun-synchronous orbit without compromise, for example on the MLST at descending node. Indeed a notable feature of on-going studies by the ENVISAT Post launch Support Office is the desire to ensure sufficient propellant remains at end-of-mission for re-orbiting to a graveyard orbit to ensure the orbital slot is available for future missions [4]. An extension to the Sun-synchronous orbit is considered using an undefined, non-orientation constrained, low-thrust propulsion system. Initially the low-thrust propulsion system will be considered for the free selection of orbit inclination and altitude while maintaining the Sun-synchronous condition. Subsequently the maintenance of a given Sun-synchronous repeat-ground track will be considered, using the low-thrust propulsion system to enable the free selection of orbit altitude. An analytical expression will be developed to describe these extensions prior to then validating the analytical expressions within a numerical simulation of a spacecraft orbit. Finally, an analysis will be presented on transfer and injection trajectories to these orbits

    Approximated Computation of Belief Functions for Robust Design Optimization

    Get PDF
    This paper presents some ideas to reduce the computational cost of evidence-based robust design optimization. Evidence Theory crystallizes both the aleatory and epistemic uncertainties in the design parameters, providing two quantitative measures, Belief and Plausibility, of the credibility of the computed value of the design budgets. The paper proposes some techniques to compute an approximation of Belief and Plausibility at a cost that is a fraction of the one required for an accurate calculation of the two values. Some simple test cases will show how the proposed techniques scale with the dimension of the problem. Finally a simple example of spacecraft system design is presented.Comment: AIAA-2012-1932 14th AIAA Non-Deterministic Approaches Conference. 23-26 April 2012 Sheraton Waikiki, Honolulu, Hawai

    Limits and opportunities of risk analysis application in railway systems

    Get PDF
    Risk Analysis is a collection of methods widely used in many industrial sectors. In the transport sector it has been particularly used for air transport applications. The reasons for this wide use are well-known: risk analysis allows to approach the safety theme in a stochastic - rather than deterministic - way, it forces to break down the system in sub-components, last but not least it allows a comparison between solutions with different costs, introducing de facto an element of economic feasibility of the project alternatives in the safety field. Apart from the United Kingdom, in Europe the application of this tool in the railway sector is relatively recent. In particular Directive 2004/49/EC (the "railway safety directive") provides for compulsory risk assessment in relation to the activities of railway Infrastructure Managers (IMs) and of Railway Undertakings (RUs). Nevertheless the peculiarity of the railway system - in which human, procedural, environmental and technological components have a continuous interchange and in which human responsibilities and technological functions often overlap - induced the EC to allow wide margins of subjectivity in the interpretation of risk assessment. When enacting Commission Regulation (EC) No 352/2009 which further regulates this subject, a risk assessment is considered positive also if the IM or RU declare to take safety measures widely used in normal practice. The paper shows the results of a structured comparative analysis of the rail sector and other industrial sectors, which illustrate the difficulties, but also the opportunities, of a transfer towards the railway system of the risk analysis methods currently in use for the other systems

    Periodic problems with a reaction of arbitrary growth

    Get PDF
    We consider nonlinear periodic equations driven by the scalar p-Laplacian and with a Carath eodory reaction which does not satisfy a global growth condition. Using truncation-perurbation techniques, variational methods and Morse theory, we prove a "three solutions theorem", providing sign information for all the solutions. In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions. We also cover problems which are resonant at zero

    Non-classical correlations in non-Markovian continuous variable systems

    Get PDF
    We consider two identical and non-interacting harmonic oscillators coupled to either two independent bosonic baths or to a common bosonic bath. Under the only assumption of weak coupling, we analyze in details the non-Markovian short time-scale evolution of intensity correlations, entanglement and quantum discord for initial two-mode squeezed-thermal vacuum states. In the independent reservoirs case we observe the detrimental effect of the environment for all these quantities and we establish a hierarchy for their robustness against the environmental noise. In the common reservoir case, for initial uncorrelated states, we find that only quantum discord can be created via interaction with the bath, while entanglement and sub shot noise intensity correlations remain absent.Comment: 10 pages, 5 figure

    CFD Modeling of a Laboratory-Scale Setup for Thermochemical Materials Performance Analysis

    Get PDF
    The search for energy saving is nowadays mandatory because of the constant growth of CO2 emissions caused by an inefficient energy management. Thermal Energy Storage (TES) has an important role in designing of energy efficient systems, including solar energy storage (daily or seasonal) and waste heat from industrial batch processes. Different solutions are possible for thermal storage, based on sensible heat (e.g. water tanks), latent heat (phase change materials) or reaction enthalpy (thermochemical systems). In Thermochemical TES, a material is chosen so that it shows a high-enthalpy reversible chemical reaction at a desired temperature. In particular, water sorption in some inorganic salt hydrates is pointed out as one of the most suitable reactions for low temperature energy storage (60-120 °C). The reaction products, water and salt in a less hydrated form, are kept separated and consequently the heat is stored. Energy release is obtained with salt hydration. The main advantages are an energy storage capacity higher than other TES technologies and the possibility to control the energy release. On the other hand, one of the main issues is the difficulty to test materials performance, because standard characterization techniques use small amount of samples and their properties change dramatically when the system is scaled up to large reactors. The aim of this work is to realize a laboratory scale setup to test the performance of salt hydrate composites. A scheme of the system is reported in the attached figure (above). The active material is kept in an evaporator at a temperature sufficient to generate the dehydration reaction. Extracted water mass is measured in time in a condenser at 0°C. Air flow, temperature and humidity are measured with sensors in the system. The system was simulated using COMSOLŸ software. In particular the simulation was inspired by two models from the Application Library, Degradation of DNA in Plasma and Protein Adsorption. At first, a zero dimensional component was created with the Reaction Engineering module with two reactions to evaluate both the dehydration and condensation steps: H2Ocry->H2Ovap H2Ovap->H2Oliq Where H2Ocry is the crystallization water in the salt hydrate, H2Ovap is the air humidity and H2Oliq is the condensed water. Using a Parameter Estimation module, experimental data about dehydration were imported in the software and used to estimate the reactions kinetics constants. After that, using a Generate Space Dependent Model module we obtained a 3D component with a realistic system geometry (see attached figure below) including the modules Chemistry, Transport of Diluted Species, Surface Reactions, Heat transfer in Fluids and Single Phase Laminar Flow. Rate constants calculated in the zero-dimension model were used as first guess for the 3D model reactions. We verified that the model is able to evaluate temperature, flow and water concentration as well as the evolution of the two reactions in time. We expect that this model will allow us to classify different Thermochemical TES materials about their efficiency in heat and mass exchange, as well as to refine the design of the thermal storage system

    Improved shaping approach to the preliminary design of low-thrust trajectories

    Get PDF
    This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune
    • 

    corecore